
Cpr/SE 491 Weekly Report MAY15-06 Week 7 (10/11/14-10/17/14)

Advisors: Joseph Zambreno Client: Curtis Schwaderer (IP Fabrics, Inc)

Members (roles):

Altay Ozen (Team Leader and Team Key Concept Holder)

Andrew Heintz (Team Communication Leader)

Abraham Devine (Team Webmaster)

Project Title: Network Forensics User Interface

Weekly Summary

Determined roles of Java code and Go collector

Determined several solutions for the Pusher

Reverse engineered format of .ber file

See meeting notes and individual contributions for detailed information

Individual Contributions (this week)

Names Time

Spent

Date

Finished

Details of Task How it got

Completed

Why is it

Important

Altay Ozen 8.5 8/16 Reverse

engineered .ber

files and create

documentation

Compared output

of Java collector

and .ber format

Client gave .ber

file as an example

output of

DeepSweep HW

Andy Heintz 10 8/17 Examined

go.ipfabrics.com

package in Go

Collector

Examined code

using Notepad++

and grep to

determine how the

Collector works

Our team was

uncertain what

role the Go

Collector has in

our project

Abe Devine 2 8/16 Examined Java

code and its

input/output

Examined code in

Eclipse to find

relationships

between functions

and classes

Our team was

uncertain what

role the Java

Code has in our

project

Note: To avoid confusion, our team has moved the individual contributions up higher in the report.

Total contributions for the project

Andrew Heintz (52 hrs)

Altay Ozen (53 hrs)

Abraham Devine (21.5 hrs)

Meeting Notes:

10/18 Group Meeting

Duration: 210 min Members Present: All

Discussed misunderstanding of how system works

 DeepSweep in diagrams refers to hardware, not Java code

 Go Collector’s job is to create pcaps from DeepSweep output

 Go Collector can take input from either files or ports

 Java code is a Collector, which will replace the Go Collector

Java Collector outputs packets as 2’s complement

 Need to modify code to convert output to pcap

 Need to determine if Java can call Xplico via command line

 Could push info byte by byte instead of via command line

Discussed possible ways to push pcap files into Xplico

 Possible languages: Perl, Python, C, and Java

o Perl or Python are better choice than Java for pusher

o Both are scripting languages, so easy to run other programs

o Final phase will use Java Collector, however

 Run script constantly to check directory for new files

o Go Collector would listen to port directly and produce pcaps

o Script would run constantly, looking for new pcaps

o Once new pcap is found, script pushes pcap to Xplico

 Use script that runs every ~10 minutes via cron

o Go Collector would listen to port directly and produce pcaps

o Cron would run script every ~10 minutes

o Script would look for new pcaps and push them to Xplico

 Wake up script via a signal sent when file exists

o Go Collector would listen to port directly and produce pcaps

o Go Collector would trigger signal once file created

o Script would sleep until signal interrupts it

o Once interrupted, script pushes pcap to Xplico

 Listen to port via script and create pcaps with Go Collector

o Script would listen to port instead of Go Collector

o Script would run Go Collector to create pcaps

o Script would upload pcaps once Go Collector finishes

Pending Issues

Need to create initial version of design document

Unclear what some parts of the document mean

Will seek clarification on this in class on Tuesday

Haven’t narrowed down solutions for Pusher script yet (see above)

Solution should be reusable for Phase 2 if necessary

Solution ideally wouldn’t consume lots of memory by running non-stop

Limited ability to test uploading of pcap files created by Go Collector

Sample .ber file only has IP packets, so Xplico can’t display anything

To test that our system works properly, we will need more input

Plans for Next Week

Work on initial version of design document (8 hours per person)

Andy: System analysis, UI specification, Software design

Altay: Functional decomposition, Input / Output specification, System requirements

Abe: Software specification, Test specification, Prototype/testing

Andy: Look into requesting source repository (source.ece.iastate.edu/register/projectinfo.php)

Long Term Plans

Investigate which language would work best for Pusher script

Install selected language on virtual machines

Create Pusher script to upload pcaps to Xplico

Create a script or modify Pusher to start Xplico and Go Collector

Test Pusher script to verify uploading works

Test entire system (DeepSweep Hardware, Collector, Pusher, Xplico)

Demo entire system to client (before Thanksgiving, possibly)

